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We studied the action potential of Primo-vessels in rats to determine the electrophysiological characteristics of these structures.
We introduced a mathematical analysis method, a normalized Fourier transform that displays the sine and cosine components
separately, to compare the action potentials of Primo-vessels with those for the smooth muscle. We found that Primo-vessels
generated two types of action potential pulses that differed from those of smooth muscle: (1) Type I pulse had rapid depolarizing
and repolarizing phases, and (2) Type II pulse had a rapid depolarizing phase and a gradually slowing repolarizing phase.

1. Introduction

Acupuncture has been an important part of oriental
medicine for thousands of years. However, due to the lack
of anatomical study of meridians and the lack of scientific
proof of the existence of Qi, the nature of oriental medicine
is controversial. Many researchers have studied meridians,
acupuncture points, and Qi circulation [1-10]. However,
the results of these studies have also been disputed because
they were limited in topology and/or have not been repeated
often. Kim published his findings on the substance of
meridians in the early 1960s [11, 12]. He reported that
meridians made up a new system in the living body, different
from both the nervous system and the blood or lymphatic
vessels. Unfortunately, he did not disclose the staining
materials or methods used to observe the claimed structures;
therefore, interest in such studies has declined over the past
40 years. Recently, certain researchers have become interested
in Primo-vascular system (the scientific name for Bonghan
system) and have tried to investigate Primo-vascular system
by finding Primo-node (Bonghan corpuscle) and Primo-
vessels (Bonghan ducts) [13-18]. It was too difficult to study
the functions of Primo-vessels directly because of their small
size. Therefore, more research based on electrophysiology

was needed, for example, action potential measurements. It
is well known that tissues have different action potentials
depending on their structure and function. Thus, the
function of a tissue can be inferred by analyzing its action
potential. The study presented herein was a comparison
of the action potentials generated by Primo-vessels with
the pacemaker potential, made by smooth muscle from
the small intestine. We also introduced a mathematical
analysis method, a normalized Fourier transform that is
more useful for viewing the waveform and phase than the
power spectrum from a general Fourier transform.

2. Materials and Methods

2.1. Animals and Tissue Preparation. Male 7-week-old Spra-
gue-Dawley rats weighing 250-320 g were used. The rats
were anesthetized with an injection of 1.5g/kg urethane
(CsH7NOy) into the femoral region, and the entire surgical
procedure was performed with the rat in the anesthetized
state. A midline abdominal incision was made, and the
internal organs were exposed. Smooth muscle from the small
intestine and the small intestine surface Primo-vessels were
removed from the rats and placed on Sylgard. Primo-vessels
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FIGURE 1: The pacemaker potential waves from smooth muscle in
small intestine. The pulses rose fast and decreased gradually before
falling to the rest potential. The pulses were generated periodically
and had uniform amplitude.

were identified by its anatomical characteristics described in
Kim’s study [12]. And we dropped phosphate buffered saline
(PBS, contained (in mM) 137 NaCl, 27 KCl, 10 Na,HPO,, 2
KH,PO,) on the sample.

2.2. Equipment. Tissue preparation was viewed under a
microscope (SMZ1500, Nikon, Japan). Light was supplied
by a Fiber-Lite (MI-150, Dolan Jenner Industries, MA).
Another microscope (SZ61, Olympus, Japan) was used for
insertion of electrode (0.002” bare tungsten wire, A-M
Systems, WA) to tissue. Data were acquired by a data
acquisition system (PowerLab/16SP, ADInstruments, CO)
and amplified by Bio Amp (ML131, ADInstruments, CO).
Data acquisition program (LabChart 6, ADInstruments, CO)
was used to record. Data were analyzed with Microsoft Excel
2010 (Microsoft, WA).

2.3. Extracellular Recording. An electrode was placed in
the tissue on Sylgard. The tissue was perfused with Kreb’s
solution at a constant flow rate of about 5mL/min. Kreb’s
solution contained (in mM) 10.10 D-glucose, 115.48 NaCl,
21.90 NaHCOs3, 4.61 KCl, 1.14 NaH,POy, 2.50 CaCl,, and
1.16 MgSOy. This solution had pH 7.4 at 36°C. The
temperature of the solution in the organ bath was maintained
at 36~38°C. Electrical responses were amplified, low pass
filtered (50 Hz), and recorded (time interval: 0.0005 sec) on a
computer. The laboratory was isolated from electromagnetic
noise by Faraday cage.

2.4. Analysis. The whole action potential pulses recorded
from the smooth muscles and Primo-vessels were each
extracted separately. All pulses were differentiated by time.
For normalizing, the depolarizing and repolarizing sections
of each pulse were selected. Amplitude and time were
rescaled to have value from 0 to 1; this ensured that every
pulse had the same size on the x-axis and y-axis for a
comparison of only the pulse shape. To distinguish the
waveform, normalized pulses were Fourier transformed [19],
and the coefficients for the sine and cosine components
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were displayed separately. The coefficients for the sine com-
ponents were dotted on the negative x-axis and those for the
cosine components were dotted on the positive x-axis. The
coefficients were derived using a Fourier transform, as shown
in:

AU = [ oL - s bsmens)

+{1 +sign(f)} cos(2m ft)]dt.

The following is the inverse normalized Fourier trans-
form:

A(0)
2
+ YA f){l‘“zgn(f) sin(27 1)

+1+sign(f)

x(t) =

cos(ant)},

2
-1 <0
f:integer, sign(f): 0: f=0
I f>o0.
(2)

In this study, the Fourier transform was performed in
a 0-10 frequency range. Additionally, the amplitude, the
FW (full width, the time from depolarization back to
repolarization at the rest potential), and tpax (the time from
the rest potential to the maximum potential) were calculated.

3. Results

We identified action potential waves in the smooth muscle
called the pacemaker potentials. These waves had a rapid
rising phase followed by a plateau component with mono-
tonically declining amplitude. Figure 1 shows some of the
pacemaker pulses from the smooth muscle. These pulses
were generated periodically having frequency of 17.7 +
5.0/min. Also, there is uniform amplitude in these pulses
[20-24].

On the other hand, different types of potential waves
were found in Primo-vessels. Figure 2 shows some of the
action potential waves from Primo-vessels. These pulses
differed from those of smooth muscle in their fast rise and fall
as well as their larger amplitude. The pulses were generated
aperiodically and amplitude was irregular.

Ninety-one pulses from smooth muscle and 180 pulses
from the Primo-vessels were extracted. Figure 3 shows a
representative pacemaker pulse and its derivative. The mean
amplitude of these pulses was 4.45 + 3.02mV, and it took
0.39 = 0.165s to rise to the maximum potential and 1.83 +
0.90s to return to the rest potential (Table 1). The derivative
had a shape with short, sharp positive and long, flat negative.
There were some different two types of pulse in records from
Primo-vessels.

Figure 4 shows representative pulses of the two types
generated in Primo-vessels. Type I pulses had mean ampli-
tude of 10.02 = 8.36 mV, and it took 0.31 = 0.10s to rise to
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TaBLE 1: Amplitude, FW, and f,,x of the action potentials from smooth muscle and Primo-vessels. The amplitude means the difference
between the maximum potential and the rest potential. The FW means the time from depolarizing to repolarizing to the rest potential. The
max Means time that is taken to arrive at the maximum potential. The amplitude of the action potential from Primo-vessels was larger than
that from smooth muscle. It took similar time for depolarizing of all types of pulses including pacemaker, but their repolarizing time varied.

Amplitude (mV) FW (s) tmax (8)
Pacemaker pulse 4.45 +3.02 1.83 £ 0.90 0.39£0.16
Type I pulse 10.02 + 8.36 0.88 =0.38 0.31 =0.10
Type II pulse 13.67 + 8.69 2.75+1.17 0.38 = 0.15
20 short, sharp positive and broad, hill-like negative. This shape

Action potential from Primo-vessel
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F1GURE 2: The action potential waves from Primo-vessel. The pulses
rose fast and fell to the rest potential immediately. The pulses were
generated aperiodically having irregular amplitude. The amplitude
of these pulses was larger than those of smooth muscle.
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FIGURE 3: A representative action potential pulse from smooth
muscle in small intestine and its derivation. The derivative had
a shape with short, sharp positive and long, flat negative within
depolarizing from the rest potential and repolarizing to the rest
potential.

the maximum potential and 0.88 + 0.38 s to return to the
rest potential. The derivative of this type had a shape with
short, sharp positive and negative. Type II pulses had mean
amplitude of 13.67 +8.69 mV, and it took 0.38 + 0.15 s to rise
to a maximum potential and 2.75 = 1.17 s to return to the
rest potential. The derivative of this type had a shape with

was similar to the shape of pacemaker, but both of the two
patterns were clearly different. The derivative of pacemaker
pulse had flat and not decreasing negative value; however,
that of Type II did not have flat but decreasing negative value.

For the detailed comparison of the shape of the action
potential pulses from smooth muscle and Primo-vessels,
all pulses were normalized and Fourier transformed at the
frequency range of 0 to 10. Figure 5 shows the results of a
normalized Fourier transform for the pulses from smooth
muscle and for the two types of pulses from Primo-vessels.
For the result from smooth muscle, the first sine and cosine
components were dominant with a slight superiority of the
sine component. The Type I pulses had the same dominant
components, but the cosine component was slightly larger
than the sine component. On the other hand, for the result
of the Type II pulses, only the first sine component was
dominant. Power spectrum of three types of pulses had same
pattern and values.

4. Discussion

In this study, we investigated the mathematical difference
between the action potentials of the smooth muscle and
Primo-vessels. In the results from the smooth muscle, we
found the periodic pulses with uniform amplitude. This
result is similar to that of the study by Kito and Suzuki [20].
This similarity demonstrates that extracellular recording
is reliable and repeatable. Though extracellular recording
has inaccuracy in amplitude and rest potential, it supports
enough information to study about periodic pattern and
waveform of action potential. Therefore, we studied the
action potential of Primo-vessels by extracellular recording
to determine their electrophysiological characteristics. Based
on the Primo-vessel pulse results, it seemed that there was
no severe periodic repetition and that the amplitude had
a large variation. This result indicates that Primo-vessels
may not act periodically and that the intensity of the action
is not uniform. Aperiodic pattern and varying amplitude
can be shown also in the study by Choi et al. [23]. In
addition, the derivatives of the pulses for smooth muscle
and Primo-vessels had different patterns in between. The
pulses from the smooth muscle had rapid depolarization
phase and consistently slow repolarization phase. However,
the pulses from the Primo-vessels had two types of derivative
patterns. Type I pattern demonstrated that depolarization
and repolarization were fast. Type II pattern signified that
depolarization is rapid and that repolarization started rapidly
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FIGURE 4: Representative traces for the two types of action potential pulses from Primo-vessels and their derivatives. The derivative of Type
I pulse had a shape with short, sharp positive and negative within depolarizing from the rest potential and repolarizing to the rest potential.
For the Type II, the derivative consisted of short, sharp positive and broad, hill-like negative. There was no significant difference in amplitude

of these two types, but huge difference existed in FW.

but slowed gradually. These phenomena are shown by the
FW and fy,x values. The i, for the three types were short
suggesting that depolarization was fast. The FW values varied
greatly, indicating that the repolarization velocities were
different for each type of pulse. It suggests that Primo-vessels
have at least two types of cells generating action potential.
For a more analytical comparison, all pulses were nor-
malized and Fourier transformed. The dominant coefficient
distribution implies that frequency density was maximal at
1 in the three pulses, although their phases were different.

With respect to the characteristics of the sine and cosine
waves, the maximum amplitude of the sine wave leaned
toward the side, but the maximum amplitude of the cosine
wave was located in the center. For the pulses from the
smooth muscle, the sine component was slightly larger
than the cosine component. In contrast, for the Type I
pulse, the cosine component was slightly larger than the
sine component. These observations indicate that the pulses
from the smooth muscle had an asymmetrical structure
that leaned toward the left and that the Type I pulses had
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FIGURE 5: The coefficients from normalized Fourier transformed pulses. Sine components are displayed on the negative x-axis, and cosine
components are displayed on the positive x-axis. The bars on the graph are the mean distribution of the dots. Frequency has arbitrary unit.
(a) Power spectrum could not distinguish each type of pulse. (b—d) The normalized Fourier transform and separate displaying of coefficients
could distinguish each type of pulse. Pacemaker pulse had two dominant components with a slight superiority of the sine component. In
contrast, the cosine component was slightly larger than the sine component in Type I pulse. Type II pulse had only one dominant sine

component.

a more symmetrical structure. For the pacemaker pulse,
faster depolarization than repolarization causes the pulse
to lean toward the left, and a slow repolarization pulse
maintains a potential higher than half of the amplitude in
the middle of the FW. On the other hand, the symmetry
of the fast depolarization and repolarization generates a
dominant cosine component, and the slight lean toward the
left and the asymmetry of the curvature creates a dominant
sine component that is slightly smaller in Type I pulse.
However, only the first sine component was dominant for
the Type II pulses. The dominance of the sine component
implies that depolarization is faster than repolarization, as

for smooth muscle. The lack of a cosine component suggests
that repolarization started rapidly, and thus the potential
went down to under half of the amplitude in the middle of
the FW, and then the repolarization slowed gradually. The
larger second sine component in Type II pulses indicates that
the pulses leaned more toward the left. We also compared
power spectrum of three types of pulses. Power spectrum of
three types of pulses had same pattern and values. Judging
from the results of power spectrum, it was identified that the
action potentials of smooth muscle and Primo-vessels were
not distinguished by power spectrum since power spectrum
provided fragmentary information, only frequency density.



Therefore, the normalized Fourier transform serves as a more
sophisticated criterion for pulse distinction in comparison
with power spectrum.

5. Conclusion

We found that Primo-vessels generated different types of the
action potentials from smooth muscle located nearby using
a simple measurement of the FW, the pulse derivatives, and
a normalized Fourier transform. There were two types of
pulses generated by the Primo-vessels: Type I pulses had fast
depolarizing and repolarizing phases, and Type II pulses had
a fast depolarizing phase and gradually slowing repolarizing
phase. The sharp top and larger amplitude of the pulses
generated by Primo-vessels could distinguish them from the
pulses generated by smooth muscle; thus, it is possible to
assume that Primo-vessels perform a different function from
the smooth muscle. For confirmation of this hypothesis, fur-
ther study is needed regarding the physiological mechanism
responsible for generating these pulses and regarding which
ion channels are used.
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